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SUMMARY

It is well known that exact projection methods (EPM) on non-staggered grids su�er for the presence
of non-solenoidal spurious modes. Hence, a formulation for simulating time-dependent incompressible
�ows while allowing the discrete continuity equation to be satis�ed up to machine-accuracy, by using
a Finite Volume-based second-order accurate projection method on non-staggered and non-uniform 3D
grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving
an additional velocity �eld that enforces the discrete continuity without altering the vorticity �eld. This
is accomplished by �rst solving an elliptic equation on a compact stencil that is by performing a
standard approximate projection method (APM). In such a way, three sets of divergence-free normal-
to-face velocities can be computed. Then, a second elliptic equation for a scalar �eld is derived by
prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted
linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated
in details and stability and accuracy of the method are addressed. The resulting numerical scheme is
then applied to laminar buoyancy-driven �ows and is proved to be stable and e�cient. Copyright ?
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The hypothesis of �uid incompressibility is traditionally adopted for solving problems in
which acoustic waves propagate at a velocity much greater than that of macroscopic advective
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transport of properties, which is the case of low Mach number �ows. Such hypothesis re-
mains substantially accepted also for �ows governed by weak temperature gradients such as
buoyancy-driven �ows. Hence, even if the hypothesis of incompressibility leads to simplify
the Navier–Stokes (NS) equations, the fact that the mass-conservation law reduces to the
constraint ∇ · v=0, everywhere and for all time, produces several problems in solving the
continuous (hyperbolic in the continuity, parabolic in the momentum and energy equations)
as well as discrete formulation of the governing equations, e.g. see Reference [1]. It is well
known that the pressure acts only as a Lagrangian multiplier, thus, preserving the continuity
constraint is imperative for a well-suited numerical solution whatever the pointwise or integral
formulation of the NS equations is adopted. Owing to the advantage in separating velocity
and pressure �elds, projection methods are often used for solving the incompressible form of
the NS equations.
Finite volume (FV) formulations make use of the discretization of the integral form of

conservation laws di�erentiating in this aspect from �nite di�erence (FD) ones wherein the
pointwise form is discretized. Generally, FV-based methods are particularly favoured for their
species-conservation properties as well as for their feasibility in being applied on both regular
and non-regular grids (progresses in this �eld are highlighted by the old review [2] and the
recent book [3]). Besides, staggered (i.e. variables shifted each other in their nodal position)
or non-staggered (i.e. variables positioned in the same nodes) grid collocations are possible
with both FV and FD formulations. However, since from the appearance of the historical
Marker-and-Cell (MAC) FD-based method [4], which ensures discrete mass conservation,
staggered grids were prevalently used.
Nevertheless, owing to a greater simplicity of its implementation, the use of non-staggered

computational grids is more preferable for solving the integral form of the NS equations than
it would be on staggered grids. Considering the complexity of discretizing both integrals and
derivatives, this gain is fundamental especially when the spatial discretization is performed at
high accuracy order on a non-uniform grid, for example as done in Reference [5], or whereas
unstructured grids have to be used. However, for long time, second-order discretizations on
non-staggered grids have been considered ine�cient in producing physically relevant solutions.
The main problem while using non-staggered grids can be addressed by these argumenta-

tions. On a side, if the discrete continuity equation has to be exactly satis�ed, then the
discrete pressure‡ equation must be de�ned on a sparse stencil that, owing to the lack of
communication between neighbouring nodes (odd–even decoupling), could produce unphysical
oscillating solutions. On the other hand, if a compact stencil is used for obtaining a smooth
pressure �eld, then the discrete continuity constraint is not satis�ed up to machine-accuracy
but it converges towards a source term that is proportional to fourth-order derivatives of the
pressure �eld, multiplied by the time-step and the square of the grid step sizes [6–8]. Since
projection methods are very popular [9–12], it is usual [13] to speak of exact projection
methods (EPM) when the discrete continuity is exactly driven to zero whereas one speaks of
approximate projection methods (APM) when the continuity is not zero at machine accuracy
but converges towards the magnitude of the local truncation error. Despite the fact that both

‡The term ‘pressure equation’ will be used to indicate the elliptic equation that is solved to enforce continuity,
though for the incompressible �ow model there is no thermodynamic pressure equation but only a scalar �eld
exists acting as a Lagrangian multiplier [1, 6].
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formulations are consistent, in the �rst case one can get non-solenoidal modes, that can
destroy the regularity of the solution, in the other case, for a �nite grid measure, the mass
source violates the discrete conservation of kinetic energy in the inviscid limit and this can
be unacceptable, for example in simulating turbulence.
From a more rigorous mathematical point of view, one can distinguish between the EPM

and APM formulations by looking at the Fourier symbol of the discrete Laplacian operators,
e.g. see Reference [14]. One deduces that the nullspace of such operators has a dimension of
eight (for 3D problems) in case of the EPM, whilst there is a dimension of one in the APM.
Spurious zeros of the Fourier symbol in the EPM happens at the highest resolvable (Nyquist)
frequencies, highlighting the existing grid decoupling in a checkerboard mode. Actually, since
both EPM and APM formulations use, as a source term in Poisson equation, a discrete
divergence operator on a large stencil, the nullspace of such operator has a dimension of
eight and this fact can originate numerical oscillations in the APM, too.
Nevertheless, the continued advances in studies dedicated to these procedures allow us

to use non-staggered grids for performing oscillation-free simulations of several �ow prob-
lems but this goal still requires ‘ad hoc’ cares, sometimes producing a degrading into the
local accuracy of method. A strategy that has been successful for producing physical relevant
solutions is based on a hybridization of the traditional non-staggered grid, in which all the
variables are de�ned in the cell centres (Figure 1). A hybrid non-staggered grid is obtained
while de�ning also the normal-to-face velocities in addition to the centred variables being such
additional ‘MAC-like staggered’ variables obtainable by means of some suitable interpolation.
Furthermore, a smoothing is obtained by adding ‘ad hoc’ some dissipation terms [6, 15, 16]
derived from suitable interpolations. This approach, which is called momentum interpolation
method (MIM), has been successfully adopted for both steady and unsteady simulations [16]
and extended to unstructured grids [17].
On the other hand, a special treatment of the pressure equation on uniform structured grid

was instead proposed and analysed in Reference [8] while presenting both single and two-steps
procedures. In the single-step procedure, a 19-points computational stencil was shown to be
necessary for solving the pressure equation on a compact stencil (with no possible spurious
modes) while modifying also the source term. However, apart from the consequent compli-
cations in the boundary conditions treatment, it was found that, owing to the enlargement
of the bands of the matrix, the resulting computational procedure is very onerous being the
number of iterations almost three times greater than that required by the classical 7-points
scheme. Thus, in order to have a major computational e�ciency, a two-steps procedure is
proposed consisting in solving two consecutive elliptic equations having modi�ed source terms
but each one being discretized on a compact 7-points stencil. It was shown that these two
elliptic solvers are more rapidly resolvable than the single one on the extended stencil. Such
formulation still belongs to the class of APM formulation, the divergent constraint remaining
only approximately ensured.
A further di�erent remedy was proposed in Reference [14] wherein projection �lters are

designed to di�use non-divergent modes that can be still present in the APM-based solution.
The projection �lter adopts only the main-diagonal part of the compact elliptic operator and
the form of this projection mimics the Jacobian relaxation thus dumping high frequency errors.
However, it is recognized that �lters are equivalent to add �nite di�erence expressions for
dissipative-like derivatives (even derivatives) and some heuristic coe�cients are introduced to
modulate their impact on the solution. In fact, it was found that the solution quality degraded

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:393–432



396 F. M. DENARO
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Figure 1. Sketch of the adopted non-uniform, non-staggered structured grid. Traditional (upper) and
hybrid (lower) non-staggered cell-centred collocation of the FV-based variables.

when such �lters are applied in the entire �ow �eld. Again, the discrete continuity is not
exactly ensured.
How it appears from this framework, these strategies are generally based on the application

of some sort of di�usion-like operators and it is an open discussion if they are suitable for sim-
ulating high Reynolds number �ows, especially for simulating transitions towards turbulence
as well as in cases in which turbulence is not in local equilibrium. Direct numerical simula-
tion (DNS) and large eddy simulation (LES) are some of the most powerful methodologies
for solving turbulent �ows. In principle, the superimposed e�ect of di�usion-like operators
appears less critical in DNS whereas the dissipative part of the real energy spectrum must be
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considered and it is numerically resolved. Conversely, the e�ect in LES appears much more
critical since the MIM procedure or the di�usion-like operator-based strategies act on resolved
wavenumbers corresponding to �ow scales located close to the LES �lter (very often it is
also equivalent to the Nyquist grid cut-o�). Therefore, the superimposed dissipation a�ects
just those motion components in the inertial sub-range that are those then used in the turbu-
lence model and consequently these strategies can dramatically alter the energy transfer. As a
result, while dissipating high-frequencies errors mimics the similar physical behaviour of high
wavenumbers �ow components in DNS, the same is not true in LES and should be avoided.
On the other hand, it is well known that the lack of mass conservation is a critical problem in
turbulence since the kinetic energy (for incompressible �ows it is only an induced quantity)
results altered by an arti�cial contribution coming from the work done by the pressure (that is
the term p∇ · v). Consequently, an APM formulation could be not well-suited for simulating
turbulence.
Hence, after such picture, the spirit guiding this study can be expressed in these terms: to

develop and test a non-di�usive methodology for exactly ensuring the continuity constraint
in discrete sense while preventing the appearance of non-divergent modes. The projection-
base FV method that is here proposed exploits the hybrid non-staggered grid in which both
cell-centred and MAC-like staggered velocities are used. Anyway, it also uses the Helmholtz–
Hodge decomposition (HHD) theorem [18] for deriving an additional potential velocity �eld
(thus, without altering the vorticity �eld), de�ned only in a discrete sense, which enforces
the discrete continuity to machine accuracy. This is accomplished by solving a �rst elliptic
equation on a compact stencil, which appears in the same form of the APM formulation
then, a second elliptic equation is obtained on a di�erent stencil by prescribing that the
additional discrete gradient ensures the continuity constraint in terms of a linear interpolation
of the cell-centred velocities. Hence, while exploiting the hybrid non-staggered grid as in the
MIM, this formulation can be seen in the framework of the two-steps procedures [8] and
is thereafter addressed as double projection method (DPM). There is also a link between
the DPM procedure and the projection �lter one, which will be described in the following.
Moreover, the convective �uxes are here discretized by means of a genuine second-order
centred formula whereas in Reference [16] the intrinsically dissipative QUICK formula is
used. Particularly, it is shown how to use the MAC-like, normal-to-face, divergence-free
velocities computed after the �rst APM-based elliptic solver. The combination of sparse and
non-sparse stencils as well as the use of centred and MAC-like velocities, allows a local grid
coupling that, while ensuring the continuity constraint, stabilizes the solution without the need
of adding ad hoc arti�cial viscosity.
In order for taking into account three-dimensional non-homogeneous �ows, that is con-

�ned or interfacial �ows, a speci�c attention is focused on the proper boundary conditions
required by the DPM procedure. First, the new intermediate boundary conditions proposed in
References [12, 18, 19] are exploited since, when the HHD is not orthogonal, not only the
tangential intermediate velocity components but also the normal one must be properly pre-
scribed on the boundaries otherwise the global accuracy of the method is a�ected. Then, it is
illustrated how to prescribe the boundary conditions ensuring that the compatibility conditions
are satis�ed and a solution of the APM-based �rst elliptic step is obtainable. Furthermore, it is
shown that prescribing boundary conditions consistently to those of the �rst elliptic equation
allows us to satisfy the compatibility condition, ensuring the existence of a solution of the
second elliptic equation. Hence, it is also illustrated how the DPM is implemented along the
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boundary of non-uniform structured grids. Extension to unstructured grids is therefore feasible
as also brie�y addressed in the paper.
The paper is subdivided in a �rst part, recalling the classical literature on the EPM and APM

formulations, which illustrates the problems deriving from a second-order space–time dis-
cretization on 3D, non-uniform, non-staggered grid. Then the new DPM proposal is
addressed and a paragraph is devoted to illustrate the main features in terms of stability and
accuracy. Speci�cally, both a Neumann linear stability analysis and a convergence study on
the vortex-decaying Taylor analytical solution are shown. Eventually, results of a buoyancy-
driven �ow at moderate Reynolds and Rayleigh number are illustrated in the last section.
This �ow resembles a simpli�ed model of oceanographic �ows [20] and is analysed as it has
the critical task of reproducing a driving force that acts along the non-uniform direction as a
normal stress. Therefore, this test appears appropriate since it is fundamental to obtain a good
resolution of the pressure-like �eld as well as avoiding that erroneous compressibility e�ects
alter the energy content of the motion. Besides, the absence of a mean shear �ow allows
us also to better analyse the presence of spurious oscillations and, since this is not a sim-
ply energy-decaying �ow, one can experiment the superimposed e�ects due to the continuity
error that could produce also a numerical instability during the evolution. The performances
of two di�erent discretizations of the convective terms, the �rst one corresponding to the
adoption of a traditional non-staggered grid, the second one corresponding to the hybrid grid,
are compared. The better property of the proposed DPM formulation is clearly shown since
it guarantees an energy stable solution.

2. GOVERNING EQUATIONS AND DOMAIN DISCRETIZATION

The motion of incompressible Newtonian viscous �ows in a domain V with regular boundaries,
is governed by the momentum equation∫

�(x)

@v
@t
dV +

∫
@�(x)

n · (vv) dS +
∫
@�(x)

np′ dS=
∫
@�(x)

n · (2�D) dS (1)

here written in integral form over a �nite volume �(x) ⊆ V with boundary @� and its
outward-oriented normal unit vector n, being D=∇sv the symmetric velocity gradient having
zero trace (constraint (2) allows to get

∫
@� n ·(2�D) dS= ∫@� n ·(�∇Tv) dS), � is the kinematics

viscosity and p′=p=�0 with p the static pressure. For incompressible �uid it is well known
that, owing to the continuity constraint∫

@�(x)
n · v dS=0 (2)

that must be ensured everywhere and for all time, the pressure is only a Lagrangian multiplier.
In order to close the mathematical problem constituted by Equations (1) and (2), proper initial
and boundary conditions are prescribed over the frontier @V , e.g. see Reference [1].
In case of buoyancy-driven �ows, the hypothesis of incompressibility remains valid, the

density depends only on small temperature gradients and the coupling between the internal
energy and the momentum quantity being prescribed by means of the Bousinnesq model. For
the sake of simplicity, this coupling is not considered in the following discussions since it
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does not add an issue to the key-point concerning the imposition of the continuity constraint.
Moreover, the complete set of governing equations will be shown in Section 7.
The computational domain V=[0; Lx]×[0; Ly]×[0; Lz] is partitioned by means of a Cartesian

structured grid. Along the x- and z-�ow directions, assumed to be homogeneous, the FV
centres are uniformly distributed according to

xi = (i − 1
2 )�x; (i=2; : : : ; Nx + 1)

zk = (k − 1
2 )�z; (k=2; : : : ; Nz + 1)

(3)

being �x=Lx=Nx, �z=Lz=Nz the step sizes and Nx, Nz the number of FVs in these directions.
Along the y-direction, assumed to be non-homogeneous, a non-uniform grid is introduced

by means of a 1-D mapping y=Y (�), � being the independent variable in the transformed
axis. The latter is uniformly partitioned in Ny+1 nodes according to �p=(p−1)h, (p=1; : : : ;
Ny + 1), h=Ly=Ny being the grid-spacing and Ny the number of subdivisions in �-direction.
Thus, the FV face co-ordinates in the physical space (see Figure 1) are de�ned by y−

j =
Y (�j−1) and y+j =Y (�j), (j=2; : : : ; Ny+1) and, subsequently, the Ny FV centres are suitably
located at the cell barycentre as

yj=(y−
j + y

+
j )=2; (j=2; : : : ; Ny + 1) (4)

Fixing the boundaries nodes y1 =y−
2 = 0, yNy+2 =y

+
Ny+1 =Ly completes the domain

partition. Moreover, the distance between two adjacent FV centres is de�ned as �yj ≡
yj − yj−1 = (y+j − y−

j−1)=2, while the FV width along the y-direction is

hy(j)=y+j − y−
j =Y (�j+1)− Y (�j)= hY ′(�j) + h2Y ′′(�j)=2 + · · · (5)

Let us note that a smooth mapping will be assumed (i.e. a cosine law), so that hy=h=O(1).
Finally, one has the FV de�nition �(xi; yj; zk) ≡ �ijk =[x−

i ; x
+
i ]× [y−

j ; y
+
j ]× [z−k ; z+k ],

|�ijk |=�xhy(j)�z, where the face co-ordinates can be expressed in terms of the cell
centre co-ordinates as

x−
i = xi −�x=2; x+i = xi +�x=2

y−
j = yj − hy(j)=2; y+j =yj + hy(j)=2

z−k = zk −�z=2; z+k = zk +�z=2

(6)

This way, the frontier @V is discretized by a set of FV �ux-sections {@�}. Henceforth,
the explicit dependence of hy from j is omitted and, whereas possible, the simpli�ed index
notation x±

i = i ± 1=2, y±
j = j ± 1=2; z±k = k ± 1=2 is used for de�ning the faces co-ordinates.

As shown in Figure 1, all the unknown �ow quantities are co-located in the FV centre (i; j; k)
de�ned by Equations (3), (4) constituting the framework of the traditional non-staggered grid.

3. TIME INTEGRATION

The time integration of the momentum equation (1) is based on the second-order accurate
semi-implicit Adams–Bashforth=Crank–Nicolson (AB=CN) scheme. In particular, only the dif-
fusive terms along the y-axis are integrated according to the CN approximation, while the AB
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time-extrapolation is adopted for all the others. According to such integration method, since
for cell-centred velocities the second-order approximation v ∼= v (the bar indicating a volume
average over �) applies, the discrete momentum equation written in a generic position (i; j; k),
along with the associated boundary conditions, becomes

(
I − ��t

2
D2

)
vn+1 =

(
I +

��t
2
D2

)
vn +

∫ tn+1

tn
mpress dt

+
�t
2

{3[�(D1 +D3)vn +mnconv]− [�(D1 +D3)vn−1 +mn−1conv]}

vn+1 = vn+1b on @V

(7)

having de�ned the identity operator I , the vector �elds

mconv = − 1
|�(x)|

∫
@�(x)

(vv) · n dS; mpres = − 1
|�(x)|

∫
@�(x)

p′n dS (8)

and the integro-di�erential operators acting along the Cartesian directions as D1, D2, D3

D1()≡ 1
|�(x)|

∫ z+

z−
d�
∫ y+

y−

(
@
@�

∣∣∣∣
x+

− @
@�

∣∣∣∣
x−

)
d�

D2()≡ 1
|�(x)|

∫ z+

z−
d�
∫ x+

x−

(
@
@�

∣∣∣∣
y+

− @
@�

∣∣∣∣
y−

)
d�

D3()≡ 1
|�(x)|

∫ y+

y−
d�
∫ x+

x−

(
@
@�

∣∣∣∣
z+

− @
@�

∣∣∣∣
z−

)
d�

(9)

x±; y± and z± being the FV face co-ordinates as de�ned in (6).
The velocity-pressure de-coupling is obtained by means of the pressure-free projection

method [9–12], which is based on a prediction step, wherein a non-solenoidal vector �eld v∗
is obtained by solving Equation (7) without considering the pressure term,

(
I − ��t

2
D2

)
v∗ =

(
I +

��t
2
D2

)
vn +

�t
2

{3[�(D1 +D3)vn +mnconv]

−[�(D1 +D3)vn−1 +mn−1conv]}

v∗ = v∗b on @V

(10)

along with proper intermediate boundary conditions, here assigned following a new procedure
reported in References [12, 18, 19]. It is worthwhile remarking that, in (10), the discrete
velocities �elds vn, vn−1 must be divergence-free.
Again, the buoyancy term can be easily added in the discrete equation (10) since the

integral of the temperature can be approximated by means of either the CN or AB schemes. In
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fact, Equation (10) represents also the adopted time-discretization for the advection–di�usion
temperature equation shown later in Section 6. Therefore, even if the momentum equation
is coupled with the temperature one, this latter can be updated without having to compute
before the �eld v∗.
Eventually, assume that a second-order centred spatial discretization§ of (10) has been

performed and thus allowed us to compute the discrete intermediate velocity. That is, a set of
discrete values, let say {u∗; v∗; w∗}C is available in the centres of the previously de�ned FVs.
Then, in order to obtain a �nal vector �eld vn+1, the intermediate velocity is projected into
the sub-space of the divergence-free vector �elds. Indeed, according to the Helmholtz–Hodge
decomposition, v∗ is expressed as the sum of the divergence-free velocity �eld vn+1 and a
pure gradient �eld

vn+1 = v∗ −�t∇�n+1 (11)

Decomposition (11) applies both in continuous and discrete sense. However, it is well
known that, after time discretization, ∇� will be only a �rst-order (in time) approximation
of the real pressure gradient although this does not a�ect the velocity accuracy provided that
the decomposition (11) is really orthogonal [9–12, 18, 19]. Now, the setting of the projection
step on non-staggered grid is illustrated.

4. SETTING AND DISCRETIZATION OF THE PRESSURE PROBLEM: THE APM STEP

The guidelines of the procedure, developed on non-uniform, non-staggered grids, are now
highlighted along with the resulting key-problem. Although some of the main aspects are
well recognized in the literature, for the sake of completeness and before presenting the new
ideas, the issue is illustrated.
Starting from the HHD, by taking the divergence of both sides of (11) and integrating over

a generic FV, after applying the Gauss theorem and setting the updated velocity �eld to be
divergence-free, one gets the equation

1
|�|

∫
@�
n · vn+1 dS=0= 1

|�|
∫
@�
n · v∗ dS −�t 1|�|

∫
@�
n · ∇�n+1 dS (12)

that has to be discretized while collocating the variables in the FV centres, see (3), (4). Let
us highlight that, at this stage of the projection procedure, the discrete set {u∗; v∗; w∗}C is the
only already available and represents the source term in (12), the �nal goal being to obtain
the divergence-free velocity in the centres of the FVs, i.e. a set of discrete values, let say
{un+1; vn+1; wn+1}C .
Owing to the adopted grid system, a second-order discretization of the surface integral can

be obtained by exploiting the simple mean value formula. This means that a surface integral

§Let us recall that the momentum interpolation method proposed in Reference [16] exploits the upwinded QUICK
discretization for the convective terms. Actually, in this study, a genuine second-order centred discretization is
used in two di�erent forms as detailed in Section 7.
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of a generic vector �eld f ≡ (fx;fy;fz) can be approximated as

1
|�ijk |

∫
@�ijk

n · f dS = 1
�xhy�z

[∫ z+k

z−k

dz
∫ y+j

y−
j

(fx|x+i − fx|x−i ) dy

+
∫ z+k

z−k

dz
∫ x+i

x−i

(fy|y+j − fy|y−
j
) dx +

∫ x+i

x−i

dx
∫ y+j

y−
j

(fz|+zk − fz|z−k ) dy
]

∼= (fx|i+1=2; j; k − fx|i−1=2; j; k)
�x

+
(fy|i; j+1=2; k − fy|i; j−1=2; k)

hy

+
(fz|i; j; k+1=2 − fz|i; j; k−1=2)

�z
(13)

Observe that (13) would be practically computable provided that the face-centred values
are available, as happens in the staggered MAC method. Thus, if the generic components
(fx;fy;fz) correspond to partial derivatives along x, y and z directions, respectively, then
it is rather natural to rewrite (13) only in terms of cell-centred values, while exploiting a
second-order FD approximation for each derivative. On the other hand, whereas the compo-
nents (fx;fy;fz) would correspond to the normal-to-face velocity components then it seems
suitable to adopt a local linear interpolation and expanding (13) in terms of the cell-centre
values. At the present stage, one could suppose that the linear interpolation of the velocities
would maintain the desired second-order accuracy. Actually, accuracy is not all is required to
get physically relevant solutions on non-staggered grids. This issue is the key-point; it will be
developed in the next section wherein the resulting local truncation error in the mass equation
will be analysed.
According to such observations, the two integrals in the RHS of (12) can be simply

approximated as

1
|�ijk |

∫
@�ijk

n · v∗ dS ∼=
u∗
i+1=2; j; k − u∗

i−1=2; j; k
�x

+
v∗i; j+1=2; k − v∗i; j−1=2; k

hy
+
w∗
i; j; k+1=2 − w∗

i; j; k−1=2
�z

∼= 1
�x

(u∗
i+1; j; k + u

∗
i; j; k

2
− u∗

i; j; k + u
∗
i−1; j; k

2

)

+
1
hy
(N nordj+1 v

∗
i; j+1; k + N

nord
j v∗i; j; k − N sudj v∗i; j; k − N sudj−1v∗i; j−1; k)

+
1
�z

(w∗
i; j; k+1 + w

∗
i; j; k

2
− w∗

i; j; k + w
∗
i; j; k−1

2

)
(14)
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and

1
|�ijk |

∫
@�ijk

n · ∇�n+1 dS ∼=
�x|n+1i+1=2; j; k − �x|n+1i−1=2; j; k

�x

+
�y|n+1i; j+1=2; k − �y|n+1i; j−1=2; k

hy
+
�z|n+1i; j; k+1=2 − �z|n+1i; j; k−1=2

�z

∼= 1
�x

(
�n+1i+1; j; k − �n+1i; j; k

�x
− �n+1i; j; k − �n+1i−1; j; k

�x

)

+
1
hy

(
�n+1i; j+1; k − �n+1i; j; k

yj+1 − yj − �n+1i; j; k − �n+1i; j−1; k
yj − yj−1

)

+
1
�z

(
�n+1i; j; k+1 − �n+1i; j; k

�z
− �n+1i; j; k − �n+1i; j; k−1

�z

)
(15)

having de�ned the linear shape functions along the non-uniform direction according to

N nordj+1 =
y+j − yj
yj+1 − yj =

hy
2�yj+1

; N nordj =
yj+1 − y+j
yj+1 − yj =1− hy

2�yj+1

N sudj =
y−
j − yj−1
yj − yj−1 = 1− hy

2�yj
; N sudj−1 =

yj − y−
j

yj − yj−1 =
hy
2�yj

(16)

being N nordj − N sudj = hy(�yj+1 −�yj)=(2�yj�yj+1).
It follows that, by substituting (14) and (15) into Equation (12), one gets the second-order

accurate discrete pressure equation

−�n+1i; j; k

[
2
�x2

+
2
�z2

+
1
hy

(
1

�yj+1
+

1
�yj

)]
+
�n+1i+1; j; k + �

n+1
i−1; j; k

�x2

+
�n+1i; j; k+1 + �

n+1
i; j; k−1

�z2
+
�n+1i; j+1; k

hy�yj+1
+
�n+1i; j−1; k
hy�yj

=
1
�t

[
u∗
i+1; j; k − u∗

i−1; j; k
2�x

+
N nordj+1 v

∗
i; j+1; k + (N

nord
j − N sudj )v∗i; j; k − N sudj−1v∗i; j−1; k

hy
+
w∗
i; j; k+1 − w∗

i; j; k−1
2�z

]
(17)

de�ned on a compact stencil for the discrete Laplacian operator [6–8, 13–18] which guarantees
a strong coupling between its neighbouring nodes. This represents the APM-based pressure
equation.
Clearly, on non-staggered grids, the normal-to-face intermediate velocities, that would

correspond to three sets of grid-staggered velocities, let say {u∗}f; {v∗}f; {w∗}f, are not di-
rectly available after having solved Equation (10) as happens instead in the MAC method.
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Hence, one can consider an existing functional approximation between the staggered MAC-
like sets {u∗}f; {v∗}f; {w∗}f and the non-staggered set {u∗; v∗; w∗}C that, according to the
global second-order approximation of the method, is symbolically represented by {u∗}f; {v∗}f;
{w∗}f=N [{u∗; v∗; w∗}C], N indicating the linear interpolation operator. Thus, if one thinks
of the resulting pressure equation in the original staggered MAC method, it appears that (17)
di�ers only in the source term. One can easily see that the discrete source term is based on
a large stencil, therefore spurious modes can appear at high wavenumbers.
Conversely, a di�erent approach that would allow us to use directly the non-staggered

set {u∗; v∗; w∗}C , assuming them as normal-to-face velocities, would involve a wider stencil
for discrete Laplacian operator and the consequent appearing of odd–even decoupling. These
issues address the main di�erence existing between the APM and EPM formulations. It is
well known [9, 13, 14] that the EPM formulation su�ers by the fact that the nullspace of
the discrete Laplacian operator has a dimension of eight (for 3D problems) whilst there is
a dimension of one in that used in the APM. Spurious zeros of the Fourier symbol in the
EPM appears at the highest resolvable (i.e. Nyquist) frequencies highlighting the existing
neighbouring grid decoupling. This fact can produce numerical oscillations that can amplify
and destroy the stability of the computation therefore the EPM is not here considered.
In the present study, the boundary conditions to be associated to Equation (17) prescribe the

periodicity along the x and z directions while, along the non-homogeneous vertical direction
y, one must prescribe that the pressure gradient allows the correct �ow rate through the
surfaces. Furthermore, the compatibility conditions ensuring the existence of a solution (apart
a constant) must be ful�lled. Hence, the non-homogeneous Neumann condition

@�
@y

∣∣∣∣
n+1

i; jbnd ; k
=
1
�t
(v∗i; jbnd ; k − vn+1i; jbnd ; k) (18)

is prescribed, vn+1i; jbnd ; k
being a known value and (see Figure 1) jbnd = 1 or jbnd =Ny + 2 ≡ m.

As a practical example, if one considers the upper frontier (see Figure 2) located at jbnd =m,
then Equation (17) is rewritten for each node having j=m− 1 (and for nodes not involving
periodic boundary conditions) in the following way.

j+1=m

j=m-1

j-1=m-2

ym-1

ym-2

{hy

Figure 2. Sketch of the stencil where boundary conditions for the pressure equation are prescribed.
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By exploiting condition (18), since �y|n+1i; j+1=2; k
=�y|n+1i;m; k , one gets

�y|n+1i; j+1=2; k
− �y|n+1i; j−1=2; k
hy

=
1
hy

(
v∗i;m; k − vn+1i;m; k

�t
− �y|n+1i;m−3=2; k

)
(19)

then, observing that N nordm = hy=2�ym=1; N nordm−1 = 1 − hy=2�ym=0 (see Figure 2), one gets
also

v∗
i; j+1=2; k

− v∗
i; j−1=2; k

hy�t
=
v∗i;m; k − N sudm−1v

∗
i;m−1; k − N sudm−2v

∗
i;m−2; k

hy�t
(20)

Therefore, combining (19) and (20), one rewrites Equation (17) at j while including the
boundary condition (18), according to

−�n+1i;m−1; k

(
2
�x2

+
2
�z2

+
1

hy�ym−1

)
+
�n+1i+1; m−1; k + �

n+1
i−1; m−1; k

�x2

+
�n+1i;m−1; k+1 + �

n+1
i;m−1; k−1

�z2
+
�n+1i;m−2; k
hy�ym−1

=
u∗
i+1; m−1; k − u∗

i−1; m−1; k
2�t�x

+
w∗
i;m−1; k+1 − w∗

i;m−1; k−1
2�t�z

+
vn+1i;m; k − N sudm−1v

∗
i;m−1; k − N sudm−2v

∗
i;m−2; k

hy�t
(21)

It is important to remark how the implementation of the boundary condition (18) has
involved only variables located at computational nodes, no interpolation or extra-points being
required. Besides, it is not necessary to perform any discretization¶ in (18), only a simple
substitution of (19) and (20) in (14) and (15) eliminates the need of prescribing the gradient
as well as the intermediate �eld on the frontier. The unique requirement remains to prescribe
the correct values of the normal velocity. The resulting Poisson problem becomes equivalent
to the one with homogeneous Neumann boundary conditions and a modi�ed source term, e.g.
see Reference [18].
The implementation of the boundary conditions along the directions of periodicity, is per-

formed by linking the values at i=1 with those at i=Nx and the values at i=Nx+2 with those
at i=2 and rewriting suitably Equation (21). Analogously one proceeds for the direction k.
This way, the discrete counterpart of the compatibility condition is veri�ed and a solution

of the pressure problem is ensured.

5. DEFINITION OF THE CORRECTION STEP

Once that the pressure problem has been solved, one possesses the collocated set {u∗; v∗; w∗;
�n+1}C . Hence, in order for the procedure to be completed, one must derive form it the set

¶A discretization of the pressure gradient on the boundary, is required only for assigning time-accurate intermediate
boundary conditions, see Reference [19].
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of updated discrete velocity �eld, let say {un+1; vn+1; wn+1}C , that is collocated in the same
nodes of the previously computed set. The discretization of the decomposition (11) represents
what is here called the correction step that is the �nal step of the fractional procedure. Of
course, the resulting vector �eld vn+1 must result divergence-free in a discrete sense namely, it
is expected that, while exploiting the set {un+1; vn+1; wn+1}C , the discrete continuity constraint
(12) applies in each FV.
This is the key-point of the procedure. Indeed, even though the APM-based Laplacian

operator has been discretized on a compact stencil, the ful�lment of the continuity constraint
in terms of the set {un+1; vn+1; wn+1}C is not ensured, as on the contrary happens in the original
MAC method, but it depends on the correction step. Let us clarify this issue.
Remember that, in deriving the pressure equation (17), the following discrete continuity

constraint, see (12) and (13),

1
|�ijk |

∫
@�ijk

n · vn+1 dS ∼=
(un+1i+1=2; j; k − un+1i−1=2; j; k)

�x

+
(vn+1i; j+1=2; k − vn+1i; j−1=2; k)

hy
+
(wn+1i; j; k+1=2 − wn+1i; j; k−1=2)

�z
=0 (22)

has been imposed for each FV. Actually, Equation (22) appears in the (staggered) MAC-
like form that is the discrete constraint applies in terms of the sets of normal-to-face updated
velocities, let say {un+1}f; {vn+1}f; {wn+1}f, not involving at all the updated velocity values in
the FV centres (collocated). Thus, at this stage, it is clear that only the staggered sets ensure
that (22) is ful�lled. In the following, constraint (22) will be also symbolically expressed by
means of such sets as D[{un+1}f; {vn+1}f; {wn+1}f]= 0.
On the other hand, these updated staggered velocities can be computed by writing the

decomposition (11) in its scalar components while properly discretizing them at a second-order
accuracy. This is obtained by exploiting the staggered intermediate velocities, i.e. {u∗}f; {v∗}f;
{w∗}f=N [{u∗; v∗; w∗}C], de�ned in the previous section, along with centred FD deriva-
tives expressed in terms of {�n+1}C . Hence, in each FV, one writes the discrete MAC-like
components of (11) according to

un+1i±1=2; j; k ∼=
u∗
i±1; j; k + u

∗
i; j; k

2
∓�t

(
�n+1i±1; j; k − �n+1i; j; k

�x

)

vn+1i; j+1=2; k
∼= (N nordj+1 v

∗
i; j+1; k + N

nord
j v∗i; j; k)−�t

(
�n+1i; j+1; k − �n+1i; j; k

yj+1 − yj

)

vn+1i; j−1=2; k ∼= (N sudj v∗i; j; k + N
sud
j−1v

∗
i; j−1; k)−�t

(
�n+1i; j; k − �n+1i; j−1; k
yj − yj−1

)

wn+1i; j; k±1=2 ∼=
w∗
i; j; k±1 + w

∗
i; j; k

2
∓�t

(
�n+1i; j; k±1 − �n+1i; j; k

�z

)
(23)

For the sake of brevity, hereafter, the Equations (23) will be also symbolically expressed
as a linear functional relation between the MAC-like sets {un+1}f; {vn+1}f; {wn+1}f and the
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collocated set {u∗; v∗; w∗; �n+1}C , according to

{un+1}f; {vn+1}f; {wn+1}f=N [{u∗; v∗; w∗}C]−G[{�n+1}C]

G[{�n+1}C] symbolically expressing the discrete gradient on a compact (again MAC-like)
stencil. Hence, it can be easily shown that, by substituting the Equations (23) in (22), the
pressure equation (17) is exactly recovered and therefore it is demonstrated that the discrete
continuity constraint D[{un+1}f; {vn+1}f; {wn+1}f]= 0 is ful�lled.
The evident trouble is that, up to now, one has no clear information on how to compute the

set {un+1; vn+1; wn+1}C that simultaneously satis�es, in discrete sense, the continuity constraint
while according to the decomposition (11), the only sureness is that the MAC-like velocity
update (23) is divergence-free. As a consequence, any way to produce an expression for
getting {un+1; vn+1; wn+1}C , will correspond to the assumption of existence of some functional
relation, let say F , between the collocated and staggered updated velocity sets, that is

{un+1; vn+1; wn+1}C = F[{un+1}f; {vn+1}f; {wn+1}f]

= F[N [{u∗; v∗; w∗}C]−G[{�n+1}C]]

On the other hand, since D[{un+1}f; {vn+1}f; {wn+1}f] = 0, the above functional rela-
tion should simultaneously ensure that D[F−1[{un+1; vn+1; wn+1}C]]= 0, denoting with F−1 an
implicit inverse operator. Actually, there is no guarantee that an arbitrary functional relation
F will allow us to satisfy this constraint. Let us now analyse some of the possible choices for
F , the �rst one being the most straightforward correction that does not exactly ensure mass
conservation, the other one being the new proposal presented in this study.

5.1. The APM framework: �rst-order in time accurate correction step

In order for the velocity values in the FV centres to be updated, one could perform the correc-
tion step exploiting exclusively the available set {u∗; v∗; w∗; �n+1}C . In fact, the decomposition
(11) can be discretized in the cell-centred nodes at second accuracy according to

un+1i; j; k = u
∗
i; j; k −�t

(
�n+1i+1; j; k − �n+1i−1; j; k

2�x

)

vn+1i; j; k = v
∗
i; j; k −�t

(
�n+1i; j+1; k − �n+1i; j−1; k
yj+1 − yj−1

)

wn+1i; j; k =w
∗
i; j; k −�t

(
�n+1i; j; k+1 − �n+1i; j; k−1

2�z

)
(24)

These expressions, can be symbolically indicated as {un+1; vn+1; wn+1}C = {u∗; v∗; w∗}C −
Gc[{�n+1}C], Gc[{�n+1}C] expressing now the discrete gradient on the large stencil (rigorously
speaking, Gc[{�n+1}C] implies three discrete components whereas G[{�n+1}C] indicated the
six ones in (23)). As before addressed, expressions (24) imply to have intrinsically speci�ed
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a functional relation between the collocated and the staggered sets, in fact, one can write

{un+1; vn+1; wn+1}C = {u∗; v∗; w∗}C −Gc[{�n+1}C]

= F[{un+1}f; {vn+1}f; {wn+1}f]=F[N [{u∗; v∗; w∗}C]−G[{�n+1}C]]
Even assuming the linearity hypothesis, in order for the continuity constraint D[F−1[{un+1;

vn+1; wn+1}C]]= 0 to be ensured, it should result both F[N [·]]= I and F[G[·]]=Gc[·]. There-
fore, if one assumes F =N−1 from the �rst condition, it must be veri�ed N−1[G[·]]=Gc[·]
from the second one. It is presumable that is not possible to simultaneously ful�l both
conditions‖ and some approximations are consequently introduced. Thus, it is important to
assess a posteriori the measure of the resulting error, as it is now illustrated.
For reaching this goal, one will proceed by assessing if the sets of normal-face velocities

obtained (a posteriori) from the linear interpolation of (24), let us say {ûn+1}f; {v̂n+1}f;
{ŵn+1}f=N [{un+1; vn+1; wn+1}C], allow us to satisfy Equations (17) and (22). This way, one
can quantify the error in computing D[{ûn+1}f; {v̂n+1}f; {ŵn+1}f]. Observe that even if such
velocities are located onto the same staggered positions of (23), therefore in a MAC-like
arrangement, the staggered sets are di�erent.
According to the previous guidelines, one proceeds by taking into account the expressions

(23) while substituting in them the intermediate velocities deduced from Equations (24), that is
by exploiting the cell-centred discrete HHD {u∗; v∗; w∗}C = {un+1; vn+1; wn+1}C +Gc[{�n+1}C].
Thus, after some manipulations, one rewrites the staggered sets (23) as

un+1i±1=2; j; k ∼=
un+1i±1; j; k + u

n+1
i; j; k

2
±�t

(
�n+1i±2; j; k + 3�

n+1
i; j; k − 3�n+1i±1; j; k − �n+1i∓1; j; k
4�x

)

vn+1i; j+1=2; k
∼=N nordj+1 v

n+1
i; j+1; k + N

nord
j vn+1i; j; k +�t

[
�n+1i; j+2; kN

nord
j+1

yj+2 − yj − �n+1i; j−1; kN
nord
j

yj+1 − yj−1

+�n+1i; j+1; k

(
N nordj

yj+1 − yj−1 − 1
yj+1 − yj

)
+ �n+1i; j; k

(
1

yj+1 − yj − N nordj+1

yj+2 − yj

)]

vn+1i; j−1=2; k ∼=N sudj−1vn+1i; j−1; k + N
sud
j vn+1i; j; k +�t

[
�n+1i; j+1; kN

sud
j

yj+1 − yj−1 − �n+1i; j−2; kN
sud
j−1

yj − yj−2

+�n+1i; j; k

(
N sudj−1

yj − yj−2 − 1
yj − yj−1

)
+ �n+1i; j−1; k

(
1

yj − yj−1 − N sudj
yj+1 − yj−1

)]

wn+1i; j; k±1=2 ∼=
wn+1i; j; k±1 + w

n+1
i; j; k

2
±�t

(
�n+1i; j; k±2 + 3�

n+1
i; j; k − 3�n+1i; j; k±1 − �n+1i; j; k∓1
4�z

)
(25)

‖Without going into mathematical details, some properties on the operators are required, for example the symmetry
or that they are adjoint.
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Thus, one sees that the RHS of expressions (25) are composed of two contributions: the
�rst one is the linear interpolation of the updated cell-centred velocity, i.e. the previously
de�ned sets {ûn+1}f; {v̂n+1}f; {ŵn+1}f, the other one being nothing else but a discretization
of the third derivative of the scalar �eld �n+1, multiplied by the time step and the square of
the mesh size, let say M [{�n+1}C]. Equation (25) can be symbolically indicated as

{un+1}f; {vn+1}f; {wn+1}f= {ûn+1}f; {v̂n+1}f; {ŵn+1}f +M [{�n+1}C]

In conclusion, one is now able to rigorously quantify the resulting mass conservation
error introduced by the APM formulation. Indeed, it is easy to show that D[{ûn+1}f; {v̂n+1}f;
{ŵn+1}f]= − D[M [{�n+1}C]], meaning that the discrete continuity constraint obtained by
interpolating (24), i.e. D[N [{un+1; vn+1; wn+1}C]], is not satis�ed up to machine accuracy but
provides

D[N [{un+1; vn+1; wn+1}C]] =
un+1i+1; j; k − un+1i−1; j; k

2�x

+
N nordj+1 v

n+1
i; j+1; k + (N

nord
j − N sudj )vn+1i; j; k − N sudj−1vn+1i; j−1; k

hy

+
wn+1i; j; k+1 − wn+1i; j; k−1

2�z
= � (26)

It is possible to show that the error � is expressed (for a uniform vertical grid) according
to [6, 7]

�= −�t
(
�x2

4
@4�
@x4

+
�y2

4
@4�
@y4

+
�z2

4
@4�
@z4

)∣∣∣∣
i; j; k

+ · · · (27)

By concluding the analysis of this part, one can address the following issues existing in
the APM:

(1) The velocities {un+1}f; {vn+1}f; {wn+1}f, computed by means of (23), allow us to auto-
matically satisfy the discrete continuity equation (22). They constitute a set of staggered
velocities in a MAC-like arrangement but they do not su�ce, by alone, to indicate the
way to compute the divergence-free cell-centred updated velocities.

(2) The velocities {ûn+1}f; {v̂n+1}f; {ŵn+1}f, computed by means of the linear interpola-
tion of (24), even if located in the same staggered positions of the above sets, pro-
duce a local truncation error in the continuity constraint that is �rst-order in time and
second-order in space, see (27). Though the compact stencil (17) has been adopted
for eliminating spurious modes in the discrete Laplacian operator, as a result, for �xed
mesh size, the continuity error cannot be reduced to zero at machine accuracy.

(3) As a consequence of points (1) and (2), if the convective �uxes in Equation (7) were
computed while exploiting the non-solenoidal sets {ûn+1}f; {v̂n+1}f; {ŵn+1}f (coming
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from linear interpolation of cell-centred values) instead of using directly the divergence-
free velocities (23), that is the sets {un+1}f; {vn+1}f; {wn+1}f, the continuity error can
propagate during the other time steps by the way of the computation of momentum
equation. It is well known that the error in the continuity acts as a source term in
the (derived) balance of kinetic energy equation and destroy the conservation property
(in the inviscid limit) as well as this action can drive to the numerical instability of
the calculation.

Let us introduce the new ideas of the formulation, the aim being now clear: to eliminate
the errors addressed in points (2) and (3). Therefore, one can think of a suitable modi�cation
of the approximate projection method.

5.2. The EPM framework: exact two-steps (DPM) correction

As a consequence of the above issues (2), (3), it is advisable to improve the APM pro-
cedure in order for obtaining the discrete continuity constraint better ensured. The new
idea, proposed in this paper, consists of introducing a correction that, instead of exploit-
ing the dissipative MIM procedure [6, 15, 16], directly exploits the guidelines of the HHD
theorem [18]. Actually, the MIM procedure uses both an ad hoc term that smoothes the
oscillations produced by the fourth-order derivatives in (27) and the dissipative QUICK
discretization that adds a further smoothing of vorticity. Thus, the main idea is to de-
duce a speci�c correction that, while ensuring the mass conservation up to machine ac-
curacy, uses a suitable second gradient �eld, since it would not alter the vorticity
�eld.
The main task will consist in exploiting the HHD decomposition in order to introduce

an additional scalar �eld, de�ned in the FV centres, i.e. let us say the set {fn+1}C , such
that its discrete gradient Gc[{fn+1}C] corrects (24) while allowing to make (26) vanishing.
Such a correction is de�ned only in a discrete sense and is derived only after the APM
discretization is introduced. Since the goal is to ensure the continuity constraint satis�ed up
to machine precision, one can see this procedure in the framework of the EPM formulation.
A suitable construction of the algorithm is anyway required in order to avoid the well-known
plague of the presence of spurious non-solenoidal modes. Therefore, the improved procedure
is now generally addressed as DPM formulation to distinguish from the classical EPM one.
Furthermore, the HHD theorem allows us to prescribe a second elliptic problem therefore, the
present DPM procedure well accords in the framework of the two-steps procedure reported
in Reference [9] and is now illustrated directly for the case of a non-uniform 3D structured
grid.
Let us assume having already solved the APM step, from which one possesses the set

{u∗; v∗; w∗; �n+1}C . Since the updated velocity components (24) do not result divergence-free,
let us indicate such approximation by using the tilde symbol onto the APM-based updated
velocity, thus rewriting (24) according to ṽn+1i; j; k = v∗i; j; k −�t∇�|n+1i; j; k . Therefore, the HHD theo-
rem ensures that ṽn+1i; j; k can be further decomposed in a (discretely) exact divergence-free and in
a curl-free vector �elds according to ṽn+1i; j; k = v

n+1
i; j; k+�t∇f|n+1i; j; k . It is a simple task combining the

expressions and rewriting the HHD as vn+1i; j; k = v
∗
i; j; k −�t(∇�|n+1i; j; k+∇f|n+1i; j; k)= v

∗
i; j; k −�t∇�|n+1i; j; k
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that is discretized according to

un+1i; j; k = u
∗
i; j; k −�t

(
�n+1i+1; j; k − �n+1i−1; j; k

2�x

)
−�t

(
fn+1i+1; j; k − fn+1i−1; j; k

2�x

)

vn+1i; j; k = v
∗
i; j; k −�t

(
�n+1i; j+1; k − �n+1i; j−1; k
yj+1 − yj−1

)
−�t

(
fn+1i; j+1; k − fn+1i; j−1; k
yj+1 − yj−1

)

wn+1i; j; k =w
∗
i; j; k −�t

(
�n+1i; j; k+1 − �n+1i; j; k−1

2�z

)
−�t

(
fn+1i; j; k+1 − fn+1i; j; k−1

2�z

)
(28)

Of course, the �rst and second addends in the RHS of (28) are known terms while the
LHS is the desired e�ective new velocity �eld. The new scalar �eld fn+1 is now prescribed
to be solution of an elliptic equation with a source term suitably constructed in such a way
to absorb the continuity error in (26). Speci�cally, if the expressions (28) are symbolically
rewritten as

{un+1; vn+1; wn+1}C = {ũn+1; ṽn+1; w̃n+1}C −Gc[{�n+1}C]

= {u∗; v∗; w∗}C −Gc[{�n+1}C]−Gc[{fn+1}C]

then, projecting the sets of interpolated normal-to-face velocities N [{un+1; vn+1; wn+1}C] into
the sub-space of divergence-free functions, that is setting D[N [{un+1; vn+1; wn+1}C]]= �=0,
one gets the second elliptic equation

D[N [Gc[{fn+1}C]]]=D[N [{u∗; v∗; w∗}C]− N [Gc[{�n+1}C]]]

the solution set {fn+1}C being �nally able to satisfy continuity (26). The discrete elliptic
equation for the scalar �eld f explicitly writes as

−f
n+1
i; j; k

2

[
1
�x2

+
1
�z2

+
1

�yj+1(yj+2 − yj) +
1

�yj(yj − yj−2)
]

+
fn+1i+2; j; k + f

n+1
i−2; j; k

4�x2
+
fn+1i; j; k+2 + f

n+1
i; j; k−2

4�z2
+
fn+1i; j+1; k − fn+1i; j−1; k
2(yj+1 − yj−1)

×
(
1
�yj

− 1
�yj+1

)
+

fn+1i; j+2; k

2�yj+1(yj+2 − yj) +
fn+1i; j−2; k

2�yj(yj − yj−2)

= −
[
�n+1i+2; j; k − 2�n+1i; j; k + �

n+1
i−2; j; k

4�x2
+
N nordj+1

hy

(
�n+1i; j+2; k − �n+1i; j; k

yj+2 − yj

)
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+
(N nordj − N sudj )

hy

(
�n+1i; j+1; k − �n+1i; j−1; k
yj+1 − yj−1

)
− N sudj−1

hy

(
�n+1i; j; k − �n+1i; j−2; k
yj − yj−2

)

+
�n+1i; j; k+2 − 2�n+1i; j; k + �

n+1
i; j; k−2

4�z2

]
+
1
�t

[
u∗
i+1; j; k − u∗

i−1; j; k
2�x

+
N nordj+1 v

∗
i; j+1; k + (N

nord
j − N sudj )v∗i; j; k − N sudj−1v∗i; j−1; k

hy
+
w∗
i; j; k+1 − w∗

i; j; k−1
2�z

]
(29)

Equation (29) must be associated to suitable boundary conditions prescribed in order to
satisfy the compatibility condition, ensuring the existence of a solution fn+1 (apart a constant).
Therefore, since according to Equation (18) one has

@f
@y

∣∣∣∣
n+1

i; jbnd ; k
= − @�

@y

∣∣∣∣
n+1

i; jbnd ; k
+
1
�t
(v∗i; jbnd ; k − vn+1i; jbnd ; k)=0 (30)

homogeneous Neumann boundary conditions must be prescribed at jbnd = 1 and jbnd =m.
The correct implementation of these boundary conditions involves a careful rewriting of
Equation (29). As an example, let us consider the equation that must be written at a point
(not involving periodic boundary conditions that are implemented as illustrated in the previous
section) having j=m−1 (see Figure 2). Hence, rewrite the procedure starting from Equation
(26), setting �=0 while imposing the correct normal velocity component on the boundary,
that is vn+1i;m; k , substituting (28) and exploiting (30)

un+1i+1; m−1; k − un+1i−1; m−1; k
2�x

+
vn+1i;m; k − (N sudm−1v

n+1
i;m−1; k + N

sud
m−2v

n+1
i;m−2; k)

hy

+
wn+1i;m−1; k+1 − wn+1i;m−1; k−1

2�z
=0

=
u∗
i+1; m−1; k − u∗

i−1; m−1; k
2�x

+
vn+1i;m; k − (N sudm−1v

∗
i;m−1; k + N

sud
m−2v

∗
i;m−2; k)

hy

+
w∗
i;m−1; k+1 − w∗

i;m−1; k−1
2�z

−�t
[
�n+1i+2; m−1; k − 2�n+1i;m−1; k + �

n+1
i−2; m−1; k

4�x2

−N
sud
m−1
hy

(
�n+1i;m; k − �n+1i;m−2; k
ym − ym−2

)
− N sudm−2

hy

(
�n+1i;m−1; k − �n+1i;m−3; k
ym−1 − ym−3

)

+
�n+1i;m−1; k+2 − 2�n+1i;m−1; k + �

n+1
i;m−1; k−2

4�z2
+
fn+1i+2; m−1; k − 2fn+1i;m−1; k + f

n+1
i−2; m−1; k

4�x2
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−N
sud
m−1
hy

(
fn+1i;m; k − fn+1i;m−2; k
ym − ym−2

)
− N sudm−2

hy

(
fn+1i;m−1; k − fn+1i;m−3; k
ym−1 − ym−3

)

+
fn+1i;m−1; k+2 − 2fn+1i;m−1; k + f

n+1
i;m−1; k−2

4�z2

]
(31)

so that, one gets the equation that takes into account the inclusion of the boundary
condition (30)

−f
n+1
i;m−1; k
2

[
1
�x2

+
1
�z2

+
1

�ym−1(ym−1 − ym−3)

]
+
fn+1i+2; m−1; k + f

n+1
i−2; m−1; k

4�x2

+
fn+1i;m−1; k+2 + f

n+1
i;m−1; k−2

4�z2
−
(
1
hy

− 1
2�ym−1

)(fn+1i;m; k − fn+1i;m−2; k
ym − ym−2

)

+
fn+1i;m−3; k

2�ym−1 (ym−1 − ym−3)
= −

[
�n+1i+2; m−1; k − 2�n+1i;m−1; k + �

n+1
i−2; m−1; k

4�x2

−N
sud
m−1
hy

(
�n+1i;m; k − �n+1i;m−2; k
ym − ym−2

)
− N sudm−2

hy

(
�n+1i;m−1; k − �n+1i;m−3; k
ym−1 − ym−3

)

+
�n+1i;m−1; k+2 − 2�n+1i;m−1; k + �

n+1
i;m−1; k−2

4�z2

]
+
1
�t

[
u∗
i+1; m−1; k − u∗

i−1; m−1; k
2�x

+
vn+1i;m; k − (N sudm−1v

∗
i;m−1; k + N

sud
m−2v

∗
i;m−2; k

)
hy

+
w∗
i;m−1; k+1 − w∗

i;m−1; k−1
2�z

]
(32)

However, owing to the large stencil, it is still necessary to prescribe in (32) a suitable
condition for expressing the value fn+1i;m; k while respecting (30). It is worthwhile reminding that
in determining Equation (21), the boundary condition for the scalar �eld �n+1 never required
a discretization of Equation (18) but this latter has been directly used in its continuous form.
This fact allows us some degree of freedom for setting the last condition. In fact, though
a higher order relation can be used, a congruent discretization that veri�es the compatibility
condition could be simply imposed by setting fn+1i;m; k =f

n+1
i;m−1; k . Accordingly Equation (30) is

discretized as(
fn+1i;m; k − fn+1i;m−1; k
ym − ym−1

)
= −

(
�n+1i;m; k − �n+1i;m−1; k
ym − ym−1

)
+
1
�t
(v∗i;m; k − vn+1i;m; k)=0 (33)

therefore one must set �n+1i;m; k =�
n+1
i;m−1; k+(ym−ym−1)(v∗i;m; k−vn+1i;m; k)=�t in the RHS of (32). As

a consequence, the multiplier of −fn+1i;m−1; k =2 in Equation (32) has to be modi�ed by adding
+ [1=hy − 1=(2�ym−1)][2=(ym − ym−2)] to the terms in square brackets while, of course, the
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out-main diagonal contribute of fn+1i;m; k vanishes. Furthermore, since in Equation (29) appears
the unknown fi; j+2; k , the equations at points having j=m−2 must be also congruently modi-
�ed by setting again fn+1i;m; k =f

n+1
i;m−1; k and changing the correspondent coe�cient. Analogously,

one proceeds for the bottom points at j=2 and j=3 and this speci�c treatment of the discrete
boundary conditions ful�ls the compatibility condition and the existence of a solution f is
ensured. It is now clear that one is sure that D[N [{un+1; vn+1; wn+1}C]]= 0 everywhere.
The DPM procedure is now completed since, after solving the second elliptic equation and

computing the (28), one possesses both the previous MAC-like staggered divergence-free sets
{un+1}f; {vn+1}f; {wn+1}f and the new set of collocated and divergence-free {un+1; vn+1; wn+1}C
velocities (one can disregard the APM-based one {ũn+1; ṽn+1; w̃n+1}C) that allow us completing
the cycle and going to the next time step.
It is worthwhile observing that this procedure is not limited to structured Cartesian grids but

can be extended to unstructured triangular (tetrahedral in 3D) grids. For example, considering
for the sake of brevity a decomposition of a 2D domain in KT triangles, a dual tassellation in
N Finite Volumes �i of the domain � is de�ned so that {�i} : �=

⋃N
i=1�i ;�i

⋂
�j= {0}∀i �= j

over which the NS equations (1), (2) are solved according to the APM formulation proposed
in Reference [21]. Thus, the counterpart of Equations (24) becomes

ṽn+1i = v∗i − �t
|�i|

bi∑
l=1

∫ Ql

Pl

nl�n+1 dSl (34)

where bi is the number of edges @�il=Pl−Ql composing the ith FV boundary @�i=
⋃bi
l=1@�il

and nl is the outward-oriented unit normal vector to the lth section @�il. Since one gets the
approximate continuity constraint

∑bi
l=1

∫ Ql
Pl
nl · ṽn+1 dSl=O(LTE), the second elliptic equation

must, therefore, provide a correction expressed by a gradient �eld such that the discrete
constraint is ensured in terms of the updated velocity �eld vn+1i , that is∫

@�i
n · vn+1 dS=

bi∑
l=1

∫ Ql

Pl

nl · ṽn+1 dSl −O(LTE)=0 (35)

while according to the HHD vn+1i = ṽn+1i − (�t=|�i|)
∫
@�i
nfn+1 dS. Of course, a suitable dis-

cretization of the line integrals in order for (35) to be ensured is necessary. Speci�cally,
it is necessary to build a second tassellation being, however, �′

i
⋂
�′
j �= {0}∀i �= j since a

large computational stencil is required. This extension of the DPM results rather long to be
addressed in few words and it is out of the aim of the present paper to illustrate all details.

6. GENERAL DISCUSSION ON THE DPM APPROACH: STABILITY AND ACCURACY

The previously illustrated DPM formulation has the goal of ensuring the continuity constraint
ful�lled up to machine accuracy while reducing the possibility of generating spurious high-
frequency non-divergent modes. Perhaps, spurious oscillations can be signi�cant in both the
EPM and APM procedures and must be controlled in order for physically relevant solutions
to be obtained. It is just the way of controlling the non-solenoidal modes that discerns the
bene�ts of a speci�c correction over other ones. In this sense, the goal of the DPM is
similar to that designed by means of the projection �lters-based approach for the APM [14].
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However, projection-�lters were designed in order to di�use non-solenoidal modes by means
of di�usive-like operators (the main diagonal part of a Jacobi-like relaxation is used) but they
are not designed to exactly ensure the continuity. The two-steps elliptic formulation proposed
in Reference [8] is similarly designed since the discrete approximation of fourth-order accurate
elliptic operator acts in order for high-frequency modes to be dissipated but the continuity
constraint still remains approximated. Thus, one can still speak of these two formulations as
APM-based and although are very popular for solving the incompressible form of the NS
equations, they are not without own problems.
The importance of both ensuring the satisfaction of the mass equation and avoiding spuri-

ous modes, while not adding numerical dissipation, is particularly relevant in the DNS=LES
formulations whereas the computations are performed for long time and the solution remains
unsteady. In general, even when the computational parameters satisfy the linear stability con-
straints, producing a mass error can be extremely damaging for the stability of the simula-
tions. In fact, the kinetic energy is not a resolved quantity but it is induced by the discrete
momentum quantity (e.g. see Reference [6]). Thus, producing a local mass error (even if the
surface integral mass were conserved) has its counterpart in introducing a source term in the
kinetic energy equation in the form of work done by the pressure, i.e. p∇ · v. This e�ect is
very dangerous for long-term integration since, the lack of the kinetic energy conservation
(in the non-viscous limit) can increase the total amount of energy. This increasing can be
also responsible for a numerical instability not analysable by the linear numerical stability
theory for a single scalar equation. Therefore, one must contrast instability due both to high
frequency errors (e.g. round-o�) propagating in the non-linear momentum equation and to the
increasing of total energy, not necessarily corresponding to high frequencies.
Along with the continuity errors an important issue to be analysed is the stability of the

projection method for which it is required that the projector be bounded in some norm
[9, 13, 14, 22]. Hence, while de�ning the EPM-based projector PH such that vn+1 =PH (v∗), ∇·
vn+1 =0, it is well known that it is symmetric, idempotent and bounded, that is
S(PH ) , supx �=0(‖PH (x)‖=‖x‖)61. On the other hand, the (approximate) projection oper-
ator acting in the APM, say P, is such that ṽn+1 =P(v∗), ∇ · ṽn+1 �= 0 but P is no longer
idempotent although (P)k → PH as k → ∞. There is a wide literature on the stability proper-
ties of approximate projection methods and the results are sometimes not always concordant.
It is out of the aims of the present paper to develop the stability theory, here it is worthwhile
addressing that it can be shown that the DPM projector is the product of the APM and EPM
ones, that is vn+1 =PDPM(v∗) , PH [P(v∗)], and PDPM is symmetric, idempotent as well as
bounded. Hence, concerning the DPM formulation one can consider valid the well known
stability properties of the projection methods already analysed in several studies. On the other
hand, in case of periodic conditions, one can consequently state that the DPM would reduce
to nothing else but a single EPM on a large stencil. In other words, one could be tempted
to directly rede�ne (11) while solving directly the elliptic equation for computing the �eld
∇�|n+1i; j; k , without �rst performing the APM step. However, such an elliptic equation would be
de�ned on a checkerboard stencil that produces spurious solutions. The fact that, instead of
using only ∇�|n+1i; j; k , one use both �elds (∇�|n+1i; j; k ;∇f|n+1i; j; k) allows us to couple the compact
with the large stencil by means of the MAC-like staggered velocities {un+1}f; {vn+1}f; {wn+1}f
provided by the APM step. Furthermore, one can see that for con�ned �ows, such as those
characterized by the buoyancy in which we are interested in, the stencil of the second
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elliptic solver is suitably constructed near the boundary and all nodes along the y direction are
coupled. This can be seen by observing that in (32) the next values fn+1i;m−1; k ; f

n+1
i;m−2; k ; f

n+1
i;m−3; k

are simultaneously present, corresponding to the elimination in the y direction of a spurious
zero in Fourier symbol.
After the stability of the projection method, let us now consider the stability analysis

of the discrete intermediate momentum equation. In order to examine the characteristics of
weak numerical instability present in the explicit AB integration along with the stabilizing
features∗∗ of the implicit CN scheme (adopted along the y-direction) a linear stability analysis
is now performed. Let us consider (for the sake of brevity for the 2D case) the second-
order accurate central space discretization for the convection–di�usion linear balance equation
(@’=@t) + v · ∇’=�∇2’, (u, v, � are assumed constant)[

I − �y
2
(E�y − 2I + E−�y)

]
’n+1i; j

=
[
I +

�y
2
(E�y − 2I + E−�y)

]
’ni; j

−3
2

[
cx
E�x − E−�x

2
+ cy

E�y − E−�y

2
− �x(E�x − 2I + E−�x)

]
’ni; j

+
1
2

[
cx
E�x − E−�x

2
+ cy

E�y − E−�y

2
− �x(E�x − 2I + E−�x)

]
’n−1i; j (36)

where the shift notation has been introduced and �x=��t=�x2, �y=��t=�y2, cx= u�t=�x,
cy= v�t=�y. Equation (36) can be written in the matrix notation as A · zn+1 =B · zn being
the auxiliary vector z=[’; z]T and zn=’n−1. The Von Neumann stability analysis is carried
out by substituting the Fourier component Ê(t)eik·x, k being the wavenumber vector, into the
corresponding error evolution equation and by determining the two eigenvalues of the ampli-
�cation matrix G=A−1 · B. The eigenvalues are the zeros of the Von Neumann polynomial
and they must be lower than one in modulus for the stability condition. It is well known
that the AB integration alone leads to a weak instability because one of the two eigenvalues
is slightly greater than one in modulus. The e�ect of the implicit part, in terms of global
stability, has been analysed for several combinations of the integration parameters and the
locus wherein the second eigenvalue has a unitary modulus, that is |	2|(cx; cy; Re�x; Re�y)=1,
has been computed. Because of the complication in representing the resulting hyper-surface,
only its intersections with the planes cx=0, cy=0 and cx= cy, respectively, are presented.
These curves, are shown in Figure 3 versus the cell Reynolds number Re�x= u�x=�. The
linear analysis predicts that the stability region enlarges for high Re�x values. However, it is
also well known that second-order central discretization su�er for the presence of oscillations
(Godunov theorem precludes the existence of a monotonic solution for linear second order
discretization) for increasing Re�x values therefore, it is recommended to adopt a moderate
cell Reynolds number for NS computations.

∗∗As a matter of fact, Crank–Nicolson discretization can generate oscillations in the numerical solution owing to
oscillatory decay.
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Figure 3. Stability regions for the second-order space-centred, AB=CN time discretization of a 2D
convection–di�usion linear equation. Courant number vs the cell Reynolds number: intersections with

the planes cx=0, cy=0 and cx= cy.
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Finally, before presenting the results for a buoyancy-driven �ow, a numerical accuracy
study is now performed while exploiting the Taylor vortex-decaying analytical solution, see
References [10, 12, 18]. The aim of this test is to analyse the real accuracy of the formulations
as well as the stability behaviour and the regularity in terms of the y-edge non-divergent line
modes. The test case is performed in the non-dimensional domain V =[0; 2
]×[0; 1] at unitary
Reynolds number. The choice of this domain is motivated by the fact that the analytical
solution produces a decomposition (11) that is not orthogonal over it therefore the error in
the pressure �eld can enter into the velocity one, by making the test more critical than it
would be in a domain where the decomposition is orthogonal, see Reference [12]. Periodic
boundary conditions are prescribed only in x-direction while Dirichlet ones are imposed at
y=0, y=1. An optimized SOR procedure is used in all tests for solving the elliptic equations
and a tolerance of 10−9 for both iterative solvers, to be reached by the L2 norm of the residual,
is �xed. Actually, while using an iterative method the continuity constraint is not satis�ed
up to machine accuracy but only up to the magnitude order of the residual. Of course, this
must not be considered a �aw of the DPM formulation but is just an approximation that can
be avoided by using a direct method instead of an iterative one. The integration is continued
up to the time T =0:3 and the convergence test is performed by reducing progressively the
mesh size h, maintained uniform in both directions, from the value h=1=10 up to 1=50
while taking constant the rate �t=h=2:5×10−3, that is a su�ciently small value to ensure
the numerical stability. The L∞ norm is used in the evaluation of the discretization errors
since it is sensible to measure local oscillations. The convergence curve obtained for the
vertical velocity is reported in Figure 4 for EPM, APM and DPM formulations in a double
logarithmic scale. The results clearly illustrate that EPM is far from the expected second-
order convergence owing to the fact that the L∞ norm signals errors near the boundaries and
oscillations appear everywhere. Some improvements could be obtained by using a di�erent
stencil near the boundary but oscillations still are present. Conversely, the APM formulation
produces second-order convergence as well as is reached by DPM that, however, appears
slightly better in terms of magnitude.
It is worthwhile reporting some results about the computational e�ciency of the DPM pro-

cedure. The second elliptic equation is solved by means of the same iterative (SOR) solver
used for the �rst one, while stopping at the same tolerance level. Owing to the second-order
discretization, there is almost the same number of operations as the �rst solver, the dif-
ference being in the bands of the matrix caused by the di�erent stencil. During the time
integration of the Taylor test-case, the number of cycles necessary in the second solver
to reach the tolerance (for an optimal relaxation factor) has been systematically one-third
of that one required by the �rst solver. Moreover, it was also observed that a less strin-
gent tolerance could be used without altering the resulting accuracy, for example three or-
ders of magnitude greater has been su�cient to produce a good level of the continuity
error.
However, for a unitary Reynolds number, this result cannot be considered exhaustive of

all real features of the formulations since the whole wavenumbers range is well resolved
also on the coarsest grid (that is the cell-based Reynolds number is always less than one).
Furthermore, the Taylor solution depicts an energy-decaying �ow and the behaviour of a long-
term integration can be less relevant. A speci�c application of the method in a buoyancy-
driven is thus presented since the energy is continuously transformed from thermal into
kinetic form.
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Figure 4. Taylor-vortex problem at unitary Reynolds number. Convergence curves of the
vertical velocity errors in the L∞ norm, reported in a double logarithmic scales, for the

EPM (diamond), APM (square), DPM (star).

7. PERFORMANCES OF APM AND DPM FORMULATIONS ON THERMALLY
BUOYANCY-DRIVEN FLOW

In this section, the simulations of a thermal convection �ow generated by surface cooling in
a �nite-depth stably strati�ed horizontal layer, with isothermal bottom surface, are illustrated.
This �ow is a simple prototype of convection occurring in the ocean during adverse weather
events that generates turbulence in response to cold air outbreak, e.g. see Reference [20].
However, owing to the code-validation goal, here we focus only on laminar unsteady condi-
tions. A homogeneous and steady heat �ux is prescribed at the upper surface to produce the
cooling of an initial strati�ed �ow, corresponding to a constant temperature gradient along
the depth and resulting in a hydrostatic equilibrium. Therefore, the convective motions are
generated solely by the buoyancy mechanism caused by inhomogeneities in the temperature
�eld. Such �ow can be seen in the framework of the Rayleigh–B	enard �ows. There is a
�rst phase dominated by linear di�usion of temperature that causes an increasing thickness of
the thermal boundary layer until to a time for which the upper cooled layers, once became
much denser than the lower one, can no longer be sustained and generate instability so that
convective plumes are convected towards the bottom.
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The reason that motivated the choice of this kind of �ow is twofold. From a side, one
has the critical task of reproducing a driving force that acts along the non-uniform direction
as a normal stress therefore, it is fundamentally a good resolution of the pressure-like �eld.
Furthermore, the absence of a mean shear �ow allows us to better discern the presence of
spurious oscillations corresponding to non-solenoidal modes along the y direction. Secondly,
this kind of �ow does not reach a steady state but the kinetic energy level evolves. The
fact that this is not a simple energy-decaying �ow (as in the Taylor solution) allows us to
experiment the superimposed e�ects due to the presence of continuity errors that could drive
to a numerical instability caused by a non-physical increasing of kinetic energy produced by
the work done by pressure.

7.1. Governing equations and �ux discretization of convective terms

A Cartesian domain V , having non-dimensional extensions Ly=1, Lx=Lz=
=2, is used and
the governing NS equations are rewritten including the balance of the temperature while
employing the Bousinnesq approximation for coupling the buoyancy term, the gravity g acting
along the y direction. Hence, the non-dimensional equations write in a FV as

1
|�(x)|

∫
@�(x)

n · v dS=0 (37)

@v
@t
+

1
|�(x)|

∫
@�(x)

n · (vv) dS + 1
|�(x)|

∫
@�(x)

np dS

=
2

Re|�(x)|
∫
@�(x)

n · ∇sv dS − jRa(#h − #) (38)

@#
@t
+

1
|�(x)|

∫
@�(x)

n · (v#) dS= 1
RePr|�(x)|

∫
@�(x)

n · ∇# dS (39)

having adopted the second-order approximation v ∼= v and # ∼= #, the bar indicating a volume
average over �, and #h=#h(y) indicating the hydrostatic (equilibrium) temperature distri-
bution. Thus, for a �uid of kinematical viscosity � and heat conductibility 	, the Reynolds
number is de�ned as Re= u∗H=�, H being the depth and u∗ the buoyancy reference velocity,
the Prandtl number is Pr= cp�=	, the Rayleigh number is Ra= g�H�#=u2∗, being �# the
equilibrium temperature di�erence. For a given known distribution of the velocity {vn; vn−1}C
and temperature {#n; #n−1}C �elds, Equation (39) can be �rst integrated in time by means of
the AB=CN discretization since, typically, the discrete equation for the temperature is in the
similar form of the scalar equation (36), rewritten for three-dimensions. Then, the updated
temperature �eld {#n+1}C is used for performing the time-discretization of the buoyancy term
in (38) by means of the trapezoidal formula and the projection method can be performed.
As the initial conditions are concerned, a linear distribution #(x; 0)=y of the non-

dimensional temperature is prescribed along with a zero velocity �eld. The boundary condi-
tions are prescribed as follows. At y=0 it is assumed that no-slip conditions are in e�ect,
i.e. u(x; 0; z; t)= v(x; 0; z; t)=w(x; 0; z; t)=0 and the temperature is �xed to #(x; 0; z; t)=0.
At y=1 it is assumed that there is an interface with a di�erent ambient producing heat
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exchange. However, no deformation of the interface is allowed and vanishing tangential stress
are prescribed, i.e. v(x; 1; z; t)=0, (@u=@y)|x;1;z;t =(@w=@y)|x;1;z;t =0. The interfacial heat �ux
is taken into account by considering the Fourier law and expressing the Neumann boundary
conditions as (@#=@y)|(x;1;z;t) = −q∗H=	�#, −Nu, where Nu is the Nusselt number, q∗ being
the applied �ux prescribed to produce a cooling of the �uid. Moreover, periodic boundary
conditions are applied along x and z directions.
In order to analyse the performances of the proposed procedure, the numerical results are

illustrated while considering two basic solutions, the �rst one concerning the APM and the
second the DPM formulations. Thus, the cases are subdivided in two classes of solutions
according to:
Case A: Solutions obtained without solving the second elliptic equation that is only the

�rst-order corrections (24) are used. Hence, the class of APM formulations is considered
when the capital letter A is used.
Case B: Solutions obtained by solving the two-steps projection equation, that is the second-

order corrections (28) are used. Hence, the class of DPM formulations is considered when
the capital letter B is used.
Furthermore, each one of the above cases is then further subdivided in two sub-cases

corresponding to di�erent discretizations of the convective term. Speci�cally, the use of the
normal-to-face velocities accords to the cases of the traditional or hybrid non-staggered grids:
Case a: The convective �uxes in Equation (10) are computed while exploiting only a linear

interpolation of the velocity values in the FV centre. That is the staggered sets

{û2}f; {v̂2}f; {ŵ2}f; {ûŵ}f; {ûv̂}f; {v̂ŵ}f
=N [{u2; v2; w2; uw; uv; vw}C] (40)

are employed. As an explicit example, the convective �ux component of Equation (8),
corresponding to the set {û2}f, is computed by means of the mean value formula according to

1
|�ijk |

∫ z+k

z−k

d�
∫ y+j

y−
j

(u2|x+i − u2|x−i ) d� ∼= 1
�xhy�z

[(û2)i+1=2; j; k − (û2)i−1=2; j; k]hy�z

∼= 1
�x

[
(u2)i+1; j; k + (u2)i; j; k

2
− (u2)i; j; k + (u2)i−1; j; k

2

]
=
(ui+1; j; k)2 − (ui−1; j; k)2

2�x
(41)

This approach is the one referred to here as traditional non-staggered grid [6, 15, 16] but
without adopting the MIM or any other arti�cial dissipation terms. One can easily see that the
large stencil in (41) can produce local oscillations. However, in general, the normal-to-face
velocities in (40) can or cannot be divergence-free depending on which one between the main
case B or A is in e�ect, respectively.
Case b: The convective �uxes in Equation (10) are computed by exploiting directly the

MAC-like normal velocities. That is, the main-diagonal discrete �uxes are symbolically
written as

{u2}f; {v2}f; {w2}f= {N [{u∗; v∗; w∗}C]−G[{�n+1}C]}2 (42)
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wherein only the MAC-like velocities, see Equations (23), are used, whereas the out main-
diagonal discrete �uxes writes as

{uv̂}f; {uŵ}f = {N [{u∗}C]−G[{�n+1}C]}N [{v; w}C]
{vû}f; {vŵ}f = {N [{v∗}C]−G[{�n+1}C]}N [{u; w}C] (43)

{wû}f; {wv̂}f = {N [{w∗}C]−G[{�n+1}C]}N [{u; v}C]

wherein both MAC-like and interpolated velocities are used. As a practical example of the
di�erences existing from case a, the same �ux component (41) rewrites now directly by using
(42) as

1
|�ijk |

∫ z+k

z−k

d�
∫ y+j

y−
j

(u2|x+i − u2|x−i ) d� ∼= 1
�xhy�z

[(u2)i+1=2; j; k

−(u2)i−1=2; j; k]hy�z= (ui+1=2; j; k)
2 − (ui−1=2; j; k)2
�x

(44)

where, by exploiting (23), only the MAC-like staggered velocity set {u}f is used. Conversely,
an out main-diagonal term, for example the set {uv̂}f= {N [{u∗}C]−G[{�n+1}C]}N [{v}C] in
(43), allows us to write

1
|�ijk |

∫ z+k

z−k

d�
∫ y+j

y−
j

[(uv)|x+i − (uv)|x−i ] d�

∼= 1
�xhy�z

[(uv̂)i+1=2; j; k − (uv̂)i−1=2; j; k]hy�z

∼= ui+1=2; j; k(vi+1; j; k + vi; j; k)− ui−1=2; j; k(vi; j; k + vi−1; j; k)
2�x

(45)

where the hybrid product between MAC-like and interpolated velocities product appears. One
can see that, di�erently from (41), this time the stencil is always compact. This formula
accords to what is also proposed in References [13, 16, 17] since the used normal-to-face
velocities are always divergence-free independently from using the case A or B.
From now on, while illustrating the results, the four cases are recalled by adopting the

simple nomenclature Aa, Ab, Ba and Bb.

7.2. Numerical results

The simulations are performed only for the speci�c case of laminar �ow and weak strati-
�cation. Thus, the non-dimensional parameters are �xed to Nu=600, Pr=1, Ra=2, and a
moderate Reynolds number, i.e. Re=30, is prescribed. Figure 5 while describing a picture of
the thermally buoyancy-driven motion, helps us in understanding how the solution generally
behaves. In particular, a series of temporal snapshots each one representing �ve temperature
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Figure 5. Iso-surfaces of temperature in the buoyancy-driven �ow. Snapshots of the initial time-evolution
of thermal boundary layer and onset of the instability at T ≈ 2.
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iso-surfaces is reported. The sequence describes that, starting from the initial hydrostatic equi-
librium condition, the heat �ux imposed at the upper interface causes the cooling of the �uid
that onset the motion and increases the thickness of the thermal boundary layer. According
to the Rayleigh–B	enard �ows, it can be seen that there is a �rst phase dominated by the
linear di�usion of the temperature in a practically unperturbed �ow until to the time T ≈ 2 at
which instability starts. When the boundary layer becomes su�ciently ample, the convective
motion starts and dominates the �ow with appearance of thermal plumes. Laminar conditions
are evident by inspecting the large dimension of the �ow structures conversely, a typical case
of turbulence in ocean, would similarly reproduce the same buoyancy mechanism however,
while creating a well wider range of characteristic �ow scales.
Initially, the comparisons of the results are illustrated in the case in which the domain V

is discretized by using 21×28×21 volumes while adopting a cosine law stretching along y
(such that, near the interface at j=m − 1, the minimum mesh width min(hy)≈ 1:57×10−3

is obtained) and setting �t=2×10−5. Both elliptic equations are solved by means of an
optimized SOR procedure, the �rst one stopped at a tolerance of 10−9, the second at 10−6, to
be reached by the L2 norm of the residual. Clearly, this means that the DPM procedure does
not ensure the continuity to be satis�ed up to machine accuracy but it stays limited within
the chosen tolerance on the residual.
Owing to the unsteady character of this �ow, in order for a clear comparison of the four

cases to be highlighted, some suitable integral quantities are monitored in time. Speci�cally,
they are:

— the volume averaged kinetic energy that is subdivided in its horizontal, i.e. (0:5=|V |)∫
V (u

2 + w2) dV , and vertical, i.e. (0:5=|V |) ∫V v2 dV , contributions (Figure 6);
— the total continuity error, i.e. the sum of the (26), i.e. D[N [{un+1; vn+1; wn+1}C]], over
all the FVs (Figure 7).

Figure 6 highlights the already commented behaviour, starting from the initial equilibrium
condition, the �rst phase is dominated by the linear di�usion of the temperature until to
the time T ≈ 2 with a vanishing contribution of kinetic energy. However, oscillations in the
total continuity are already visible in Figure 7, highlighting the intensity of non-divergent line
modes along y. Clearly, the DPM well controls such oscillations. When the thermal boundary
layer becomes su�ciently large and the convective motion is onset, T ¿ 2, the kinetic energy
rapidly increases.
It is worthwhile observing that, regardless of using APM or DPM procedures, both cases

Aa and Ba produced solutions that become numerically unstable just after the onset of the
convective regime although in Ba, owing to the use of the second elliptic equation, there
is a small continuity error. Thus, it is plausible to deduce that the traditional non-staggered
discretization a of the convective �uxes is responsible for generating high frequencies errors
(contributing to the aliasing errors) that lead to the numerical instability eliminating any
bene�t of the second elliptic correction. This fact accords to the structure of the discrete �ux
operators acting on large stencil, e.g. see Equation (41), that allows the generation of spurious
high frequency modes. Therefore, it seems advisable to use always the normal-to-face velocity
(23), by using the hybrid non-staggered grid, whilst the traditional non-staggered one must
be avoided.
Conversely, both cases performed on to the hybrid staggered grid, Ab (APM) and Bb

(DPM), appear energy-stable, the simulations being continued for a time greater than that
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Figure 6. Buoyancy-driven �ow on 21×28×21 volumes. Time-evolution of the horizontal (top)
and vertical (bottom) contributions of the volume averaged kinetic energy.

reported in the �gures. A �ner observation to discern the best formulation is consequently
necessary. However, while comparing the two cases, it is interesting to see that the case
Ab produces a vertical component of the averaged kinetic energy greater in magnitude than
in the case Bb, the di�erences in the horizontal one being less relevant. This issue hence
deserves further investigations since it appears that, having used the same discretization of
the convective �uxes, such di�erence should be attributed only to the false compressibility
e�ect in the APM simulation. More speci�cally, it is useful to investigate if the continuity
error in case Ab, highlighted in Figure 7, is mainly due to non-solenoidal modes along the
vertical direction and is causing the discrepancy in the levels of the vertical kinetic energy.
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Figure 7. Buoyancy-driven �ow on 21×28×21 volumes. Time-evolution of the volume averaged
continuity errors resulting in the four cases.

Therefore, the velocities (Figures 8(a)–(c)) and temperature (8(d)) pro�les along y, aver-
aged in the homogeneous-�ow (x, z) plane and reported at di�erent times, i.e. T =1; 10; 20,
are illustrated and analysed. In Figure 8(a), the velocity pro�les at T =1 clearly illustrate
that, although the magnitude of the oscillations appears generally small, the vertical velocity
near the upper interface, where the grid points are more clustered, contains oscillations that
are stronger in case Ab than those appearing in Bb. Despite of the compact stencil of the
APM-based elliptic operator, the presence of non-solenoidal y-modes is remarkable whereas
the DPM allows us to reduce the oscillations to a level controlled by the tolerance used in
solving the second elliptic equation. At this time, the main convective motion is substantially
absent, the di�usive thermal boundary layer is just been forming (the two averaged temper-
ature pro�les at T =1 in Figure 8(d) are practically coincident). This feature shows that the
DPM formulation successfully acts to locally smooth oscillations, without using dissipative-
like operators. As a comparison, the goal pursued by projection-�lter methods, proposed in
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Figure 8. Buoyancy-driven �ow on 21×28×21 volumes: (a) velocity pro�les averaged
in the (x; z) plane at T =1; (b) velocity pro�les averaged in the (x; z) plane at T =10;
(c) velocity pro�les averaged in the (x; z) plane at T =20; and (d) time evolution of the

temperature pro�les, averaged in the (x; z) plane at T =1; 10; 20.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:393–432



428 F. M. DENARO

Reference [14], is similar but requires locally adding a dissipation-like operator that degrades
the formal accuracy. Further information can be deduced during the time evolution since,
regardless of the moderate Reynolds number, the �ow pictures become very di�erent in the
two cases. Speci�cally, by looking at Figures 8(b) and (c), it appears that the averaged hor-
izontal velocity component U(y) is substantially greater in case Ab than in Bb. Thus, the
convective motion is more energized in the homogeneous plane. The temperature pro�les in
Figure 8(d) illustrate a particular issue observable during the time evolution from T =10 to
20. Examining case Ab, it clearly appears that the pro�le is no longer monotone at T =20
showing also an inversion from the behaviour at T =10. Conversely, the pro�le is always
monotone and progressively diminishing in the case Bb. This discrepancy is rather relevant
and someway surprising if one considers the fact that the non-dimensional parameters are
rather moderate and laminar �ow condition should minimize the discrepancies. Remembering
that, if the continuity equation is not well resolved, as happens in the APM, the term p∇ · v
acts as a source term in the kinetic energy equation, which is then converted in thermal
energy, the di�erence in the evolution of the temperature pro�les could be caused by this
spurious e�ect. Hence, a deeper analysis seems necessary and, for the sake of conciseness,
one now focuses only on the energy-stable cases Ab and Bb that are those using the hybrid
non-staggered grid.
In order to investigate further the salient features of the DPM formulation as well as to

assess the causes of discrepancies in the previous results, a grid-re�nement should help us
in understanding the mechanism that generates this e�ect. Thus, two other runs have been
performed by re�ning the domain discretization while using 50×50×50 volumes, the stretching
being only along the vertical direction (the minimum vertical mesh size near the interface
becomes min(hy)≈ 4:93×10−4). The same non-dimensional parameters and time-step (i.e.
now the Courant number results increased) as well as the same tolerance for the two elliptic
solvers are used. This way, it is supposed to highlight the sensitivity of the solution with
respect only to the mesh size. In fact, on one hand, one reduces the (spatial) continuity error
in the APM formulation, see Equations (25), (27), on the other hand, owing to the increase
in the Courant number and the reduction of the cell-based Reynolds number, the stability
region of the linear AB=CN equation (see Figure 3) highlights a more critical constraint on
the integration parameters. Of course, this stability restriction applies for both APM and DPM
formulations, thus one can assess the di�erent behaviour exclusively in terms of the continuity
error.
However, despite of the reduction of the continuity error, it can be seen from the evolution

of the kinetic energy levels reported in Figure 9 that the case Ab (APM) becomes numerically
unstable at T ≈ 5 whilst the case Bb (DPM) has no stability problem. Instability seems to
start mainly from the vertical energy contribution whereas the horizontal one increases but
while staying still in the limits. This instability is associated to the presence of non-divergent
line modes of velocities in the vertical direction close to the interface (for the sake of brevity
not reported), such oscillations being rapidly ampli�ed owing to the more critical stability
constraint. Conversely, the velocity pro�les reported in Figure 10 con�rm that the DPM is
oscillation-free at T =1 and the other pictures illustrate the time evolution at T =10; 20.
Finally, the time evolution of the temperature pro�les are shown in Figure 10(d) and it
con�rms the monotonic behaviour already observed on the coarse grid.
Therefore, one can assess that, by using the second elliptic solver, the DPM formulation

takes advantage in terms of both accuracy and improvement of the stability features. Again,
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Figure 9. Buoyancy-driven �ow on 50×50×50 volumes and �t=2×10−5. Time-evolution of the
horizontal (top) and vertical (bottom) contributions of the volume averaged kinetic energy.

the theoretical linear stability analysis that was performed in Section 6 must be considered
only as an indication since the non-linear character of NS equations generally produces more
critical stability constraints. Of course, one cannot generalize this result by stating that the
case Ab is unconditionally unstable, but the fact was highlighted that there exists a clear
relation between continuity errors, generation of non-solenoidal velocity modes and stabil-
ity. All the analysed methods are formally second-order accurate but, since accuracy order
is only an asymptotic estimate, it is not surprising that for a �xed mesh size there are dif-
ferences in the resulting results. Now these di�erences appeared also on the stability of the
computation.
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Figure 10. Buoyancy-driven �ow on 50×50×50 volumes and �t=2×10−5 for the case Bb: (a) velocity
pro�les averaged in the (x; z) plane at T =1; (b) velocity pro�les averaged in the (x; z) plane at T =10;
(c) velocity pro�les averaged in the (x; z) plane at T =20; and (d) time evolution of the temperature

pro�les, averaged in the (x; z) plane, at times T =1; 10; 20.

8. CONCLUDING REMARKS

This study explored some corrective methodologies that can be applied on a second-order
accurate Finite Volume method on non-staggered grids in order for the continuity constraint
to be ensured up to machine accuracy while not adding dissipation-like terms. In fact, this
study is part of a more general research concerning both the direct numerical simulation
(DNS) and the large eddy simulation (LES) of oceanographic �ows for which buoyancy, wind
stress, Coriolis acceleration are simultaneously present and drive turbulence in the marine
environment (e.g. mixed layer, Langmuir circulation). Therefore, the goal is to implement
an energy stable formulation that is suitable in simulating incompressible turbulence while
avoiding false e�ects in the energy dynamics due to compressibility errors. Especially the
LES approaches require a careful resolution of the variables in the characteristic spectrum
range since the modelling procedure for computing the sub-grid scale terms (e.g. the dynamic
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procedure) both for the momentum and thermal energy equation, e.g. see References [12, 22],
can be dramatically a�ected by numerical errors.
Therefore, it was analysed what happens by using the exact and approximate projection

method and, since the standard exact projection method strongly su�ers presence of non-
divergent spurious modes whereas the approximate one does not satisfy the mass conserva-
tion, a strategy is suggested to obtain an exact projection but in two consecutive steps (DPM).
Actually, other methods such as the MIM or the projection-�lter method prevent spurious os-
cillations but adds arti�cial dissipative terms that can alter the resolved energy spectrum whilst
the present method is based only on a potential correction. Thus, a second elliptic equation,
suitably derived from the projection of cell-centred intermediate velocity, is proposed. It is
worthwhile observing that the additional computational e�ort (although it is not necessary to
use the same high tolerance level of the �rst solver) is justi�ed by the fact that otherwise one
should use a very re�ned grid as well as a small time step to reduce the errors of the APM.
The new DPM proposal was addressed and the main features in terms of stability and

accuracy are illustrated by means of the Taylor vortex decaying test-case. Eventually, the
DPM formulation has been developed for solving a laminar unsteady buoyancy-driven �ow
and hybrid and traditional non-staggered grid collocations have been compared. The results
obtained for a moderate Reynolds and Rayleigh numbers, illustrated the better quality of the
present formulation.
At present, DNS and LES simulations of turbulent oceanographic �ows with second-order

formulations are currently under investigation [23]. Furthermore, a three-dimensional exten-
sion of the higher order formulation [24] is also in progress. Even if many disquisitions in
this paper are valid when one speaks of second-order central discretizations, the local mass
conservation guaranty and the absence of spurious non-solenoidal modes are requisite that
remain fundamental also for higher order accurate discretizations.
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